Sketch face recognition based on light semantic Transformer network

Author:

Cao Lin12,Yin Jianqiang2,Guo Yanan2ORCID,Du Kangning2,Zhang Fan2

Affiliation:

1. Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument Beijing Information Science and Technology University Beijing China

2. Key Laboratory of Information and Communication Systems Ministry of Information Industry Beijing Information Science and Technology University Beijing China

Abstract

AbstractSketch face recognition has a wide range of applications in criminal investigation, but it remains a challenging task due to the small‐scale sample and the semantic deficiencies caused by cross‐modality differences. The authors propose a light semantic Transformer network to extract and model the semantic information of cross‐modality images. First, the authors employ a meta‐learning training strategy to obtain task‐related training samples to solve the small sample problem. Then to solve the contradiction between the high complexity of the Transformer and the small sample problem of sketch face recognition, the authors build the light semantic transformer network by proposing a hierarchical group linear transformation and introducing parameter sharing, which can extract highly discriminative semantic features on small–scale datasets. Finally, the authors propose a domain‐adaptive focal loss to reduce the cross‐modality differences between sketches and photos and improve the training effect of the light semantic Transformer network. Extensive experiments have shown that the features extracted by the proposed method have significant discriminative effects. The authors’ method improves the recognition rate by 7.6% on the UoM‐SGFSv2 dataset, and the recognition rate reaches 92.59% on the CUFSF dataset.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Computer Vision and Pattern Recognition,Software

Reference43 articles.

1. Attention is all you need;Vaswani A.;Adv. Neural Inf. Process. Syst.,2017

2. Denseformer: A dense transformer framework for person re‐identification

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3