Affiliation:
1. PCFM Lab GD HPPC Lab Guangdong Engineering Technology Research Centre for High‐performance Organic and Polymer Photoelectric Functional Films State Key Laboratory of Optoelectronic Materials and Technologies School of Chemistry Sun Yat‐sen University Guangzhou China
Abstract
AbstractThe high permittivity of polymer dielectrics facilitates their use in the electronics industry. Compared to inorganic ceramics and composites, intrinsic high permittivity polymer dielectrics have the advantages of easy solution processing and better homogeneity. The permittivity of common polymers is generally low, hence it would be worthwhile to explore avenues for augmenting the permittivity of polymer dielectrics via judicious and efficient structural design. The effective strategies used to increase the permittivity of intrinsic polymers encompass elevating local polarisabilities by fortifying electron delocalisation capabilities, exploiting ion pairs to generate atomic clusters with larger dipole moments, amplifying dipole density, augmenting dipole mobility, and so forth. Due to the rigidity and flexibility of the polymer backbone's decisive influence on the dielectric's all‐around performance, its selection also requires a total consideration of the requirements of practical applications. This work provides an overview and a brief evaluation of the dominant design strategies and mentions possible future design paradigms for polymer dielectrics.
Funder
National Natural Science Foundation of China
Publisher
Institution of Engineering and Technology (IET)
Subject
Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献