VIABILITY ANALISYS FOR LASER DIRECTED ENERGY DEPOSITION (L-DED) OF POWDER MATERIAL15CDV6

Author:

Urresti Ubillos Aizpea1ORCID,ARRIZUBIETA ARRATE JON IÑAKI1ORCID,Murua De la Mata Oihane1ORCID,Aristizabal Miren2ORCID,UKAR ARRIEN ENEKO3ORCID,LOPEZ BOLAÑOS DAVID2

Affiliation:

1. UPV / EHU (España)

2. CEIT (España)

3. Universidad del País Vasco (España)

Abstract

The aim of the present research work is the characterization of the 15CDV6 powder material for Laser Directed Energy Deposition (L DED) processes. The novelty of the work lays on the fact that this aeronautical steel has never been employed before in powder L DED process. Therefore, the mentioned steel powder was atomized specifically for the present work and the chemical composition and shape of the particles was measured to ensure the quality of the material. Afterwards, the suitability of the 15CDV6 steel for the L-DED process was studied and the employed methodology consisted of 3 sequential steps: single bead tests, overlapping beads deposition and thin wall construction. The results of each sequence are used as the basis for the following ones. In addition to the determination of the main process parameters, the influence of the deposition strategy on the process efficiency is analyzed and a correlation between the microstructure resulting from the thermal process and the hardness HV0.3 values was obtained. To finish the characterization of the process, a demonstrator part was fabricated using the optimum parameters defined during the tests. Based on the obtained results, the viability of employing 15CDV6 steel in the L-DED process is ensured. Also, it is concluded that if a sufficient cooling rate is ensured, Acicular Ferrite microstructure is obtained, which provides good mechanical properties to the L-DED manufactured parts. Nevertheless, the thermal evolution of the process needs to be controlled in order to avoid heat accumulation and cooling stops are to be applied when required. Keywords: 15CDV6, powder, L-DED, characterization, atomization.

Publisher

Publicaciones DYNA

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Porosity Reduction in 15CDV6 Steel Manufactured by L-DED;Key Engineering Materials;2023-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3