Architecture, process, and environmental diversity in a late Cretaceous slope channel system

Author:

Kneller Benjamin1,Bozetti Guilherme1,Callow Richard1,Dykstra Mason2,Hansen Larissa1,Kane Ian3,Li Pan1,McArthur Adam4,Catharina Amanda Santa1,Dos Santos Thisiane1,Thompson Philip1

Affiliation:

1. School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, U.K.

2. Occidental Petroleum, 1201 Lake Robbins Drive, The Woodlands, Texas 77380, U.S.A.

3. Equinor ASA, 4035 Stavanger, Norway

4. Universidade Federal do Rio Grande do Sul, Avenida Paulo Gama, 110, Bairro Farroupilha, Porto Alegre, Rio Grande do Sul, Brazil

Abstract

ABSTRACT Arroyo San Fernando, on the Pacific coast of Baja California, Mexico, provides a superb view of the architecture of a Maastrichtian active margin slope channel system and the record of its evolution through a third-order sea-level cycle. The succession is organized into architectural building blocks (channel-complex sets) consisting of a channel belt with an axial region and a channel-belt margin of terraces and internal levees. The channel belt is confined by an external levee on one side and by an erosion surface into the slope on the other. Each channel-complex set can be subdivided into three stages of evolution: Stage I consists of highly amalgamated coarse-grained channel complexes, Stage II consists of gravelly meander belts with marginal and stratigraphically intervening thin-bedded turbidites, and Stage III consists of mudstones representing abandonment. This succession is associated with repeated and therefore predictable changes in architecture, facies distribution, inferred seafloor morphology, and sedimentary process. We describe variability in the sedimentology, ichnology, palynology, provenance, and inferred sedimentary processes between and within these architectural elements. Channel formation and fill are attributed to erosion, sediment transport, and deposition by turbidity currents and lesser debris flows. Ichnology indicates enhanced oxygenation and supply of organic material, substrate type, and turbidity within the channel belt; the axial region can be differentiated from the terraces by differing response to turbidity-current intensity. Levee environments show ichnological gradients away from the channel towards background slope. Palynology reflects confinement of the supply of terrigenous material to the channel belt, but is also indicative of stratification within the turbidity-currents, as is the distribution of heavy minerals. Provenance is from the extinct part of the continental-margin arc to the east, via high-gradient gravelly streams and across a steep shoreline, with direct supply of coastal material to deep water. Architectural hierarchy bears comparison with other slope channel systems, but in common with them the fill represents only a small fraction of the time that the system was active.

Publisher

Society for Sedimentary Geology

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3