Effects of temperature field and SiC nanoparticles on microstructure and mechanical properties of n-SiCp/Mg-9 %Al composites fabricated by ultrasonication-assisted semi-solid hot pressing of powder

Author:

Li Ming12,Huang Zhiwei2,Zhao Gaozhan2,Wang Hongxia1,Tao Jianquan2,Wan Yuanyuan2

Affiliation:

1. Shanxi Key Laboratory of Advanced Magnesium based Materials , School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan , P.R. China

2. Southwest Technology and Engineering Research Institute , Chongqing , P.R. China

Abstract

Abstract Mg-9 %Al magnesium matrix nanocomposites reinforced by 5 wt.% nanometre-sized SiC particles were synthesized via semi-solid powder hot pressing assisted by ultrasonication. The effect of the temperature field on the microstructure and tensile properties of the nanocomposites was systematically investigated. The distribution of the SiC nanoparticles, grain size, and morphology of the Mg17Al12 phase were found to be greatly affected by the hot-pressing temperature, resulting in strength and ductility first increasing and then decreasing with increasing hot-pressing temperatures. As the hot-pressing temperature increased to 510 °C, the nanocomposites consisted of hard SiC nanoparticles and isolated soft phases, and the SiC nanoparticles bonded well with the matrix without interfacial activity and exhibited the most uniform distribution in the nanocomposite. Moreover, compared to the Mg-9 %Al alloy, the nanocomposites exhibited significantly improved strength and excellent ductility both at room temperature and elevated temperature. The enhanced mechanical properties were attributed to the Orowan strengthening mechanism, the obvious grain boundary strengthening, and the load transfer effect.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3