Роль загальноклінічних показників крові для прогнозування перебігу коронавірусної інфекції у хворих на COVID-19: систематичний огляд

Author:

Yushchuk A. AnnaORCID,Korzhyk O. OlhaORCID,Pykaliuk V. VasylORCID

Abstract

Abstract. The course of coronavirus infection in patients with COVID-19 can cause systemic inflammation of the organism, and dysregulation of the immune system and the hemostasis system. Given the possibility of severe and recurrent cases of SARS-CoV-2 infection, it is imperative for clinicians to find reliable, cost-effective, and at the same time accessible blood-specific parameters that can serve as stratification markers for patients with confirmed COVID-19. The purpose of our review article is to highlight the modern research results on the characteristics of  general clinical hematological parameters (complete blood count) in patients with COVID-19 and their use for predicting the course of the coronavirus infection. We used bibliosemantic, analytical, and logical methods when writing a systematic review, as well as a generalization method. We searched and selected scientific publications by keywords in bibliographic databases, analyzed and summarized the results. The indicators of the general blood analysis (an absolute count of neutrophils, lymphocytes, platelets, and monocytes) allow calculating several newly introduced indices of inflammation, such as NLR, dNLR, PLR, MLR, NLPR, AISI, SIRI, SII. The use of such indices at the stage of hospitalization in patients with confirmed COVID-19 can be used to predict the course of the disease and the probability of a critical condition or lethal outcome.

Publisher

Lesya Ukrainka Volyn National University

Reference22 articles.

1. Peng, J., Qi, D., Yuan, G., Deng, X., Mei, Y., Feng, L., Wang, D. Diagnostic value of peripheral hematologic markers for coronavirus disease 2019 (COVID-19): a multicenter, cross-sectional study. J Clin Lab Anal. 2020, 34, pp e23475

2. Fois, A.G., Paliogiannis, P., Scano, V., Cau, S., Babudieri, S., Perra, R., Ruzzittu, G., Zinellu, E., Pirina, P., Carru, C., Arru, L.B., Fancellu, A., Mondoni, M., Mangoni, A.A., Zinellu, A. The systemic inflammation index on admission predicts in-hospital mortality in COVID-19 patients. Molecules. 2020, 25, pp 5725.7.

3. Guan, W., Ni, Z., Hu, Y., Liang, W., Ou, C., He, J., Liu, L., Shan, H., Lei, C., Hui, DSC., Du, B., Li, L., Zeng, G., Yuen, K-Y., Chen, R., Tang, C., Wang, T., Chen, P., Xiang, J., Li, S-y., Wang, J-l., Liang, Z-j., Peng, Y-x., Wei, L., Liu, Y., Hu, Y-h., Peng, P., Wang, J-m., Chen, Z., Li, G., Zheng, Z-j., Qiu, S-q., Luo, J., Ye, C-j., Zhu, S-y., Zhong, N-s. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020, 382, pp 1708-1720

4. Yushchuk, A., Pykaliuk, V., Korzhyk, O. Hematocytological, biochemical, and hemostasis parameters' role in predicting the possibility of the various forms of the COVID-19 course in hospitalized Ukrainian patients: A cross-sectional study. Health Sci Rep. 2023, 6 (7), pp e1403.

5. Az, A., Sogut, O., Akdemir, T., Ergenc, H., Dogan, Y., Cakirca, M. Impacts of demographic and clinical characteristics on disease severity and mortality in patients with confirmed COVID-19. Int J Gen Med Volume. 2021, 14, pp 2989-3000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3