Stretch magnitude- and frequency-dependent cyclooxygenase 2 and prostaglandin E2 up-regulation in human endometrial stromal cells: Possible implications in endometriosis

Author:

Li Xiaochuan1,Gong Xianghui2,Zhu Lan1,Leng Jinhua1,Fan Qingbo1,Sun Dawei1,Lang Jinghe1,Fan Yubo2

Affiliation:

1. Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College,1 Shuaifuyuan Wangfujing, Dongcheng 100730;

2. Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, XueYuan Road No. 37, Haidian District 100191, Beijing, People's Republic of China

Abstract

Endometriosis, with a prevalence rate ranging from 6% to 10%, is the major contributor to pelvic pain and subfertility, and considerably reduces the quality of life in affected women. However, the pathogenesis of this disease remains largely unknown. The present study aimed to uncover the role of hyperperistalsis in the pathogenesis of endometriosis, by exploring the response of human endometrial stromal cells (ESCs) to the cyclic stretch in vitro. ESCs isolated from 18 different endometrium biopsies undergoing hysterectomy for myoma were subjected to uniaxial cyclic stretches with different magnitude and frequency using the Uniaxial Tension System. Expression of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) in stretched and unstretched ESCs were assessed by realtime quantitative polymerase chain reaction and Western blot. Production of prostaglandin E2 (PGE2) in the culture medium was measured by enzyme-linked immunosorbent assay. The cyclic stretch mimicking hyperperistalsis in endometriosis (5% elongation at 4 cycles/min) stimulated quick up-regulations of COX-2 and mPGES-1 simultaneously on both transcriptional and translational levels, and delayed PGE2 overproduction was also noted in ESCs. As the stretch magnitude or frequency increased, so did overexpression of COX-2 and PGE2 ( P < 0.05). By contrast, the cyclic stretch mimicking physiological peristalsis (3% elongation at 2 cycles/min) did not induce significant COX-2, mPGES-1 or PGE2production within 12 h. Both COX-2 and mPEGS-1 are PGE2 synthases, and the aberrant COX-2 and PGE2 production play important roles in the pathogenesis of endometriosis. Therefore, the present findings revealed that increased stretch stimuli from the hyperperistalsis of endometriosis were capable of causing the aberrant COX-2 and PGE2 expression in the endometrium by mechanotransduction, in a magnitude and frequency-dependent manner. It implied possible roles of hyperperistalsis in the pathogenesis of endometriosis, particularly in the view of COX-2 and PGE2.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3