Stability of the <i>sdha</i>, <i>hprt</i>, <i>prl3d1</i> and <i>hes1</i> Gene Expression in a Rat Liver Fibrosis Model

Author:

Lebedeva E. I.1,Babenko A. S.2,Shchastniy A. T.1

Affiliation:

1. Vitebsk State Order of Peoples’ Friendship Medical University

2. Belarussian State Medical University

Abstract

So far, no versatile set of reference genes for normalizing real-time polymerase chain reaction data has been identified. Numerous studies focusing the selection of reference genes for specific purposes frequently fail to elaborate a suitable selection strategy. In a number of such studies, the stage of selecting reference genes is ignored due to either its high cost or other reasons. As a result, the normalization of data is carried out using genes, which have previously shown their effectiveness under other, sometimes completely different, experimental conditions. In this work, we aim to study variations in the level of mRNA expression of several genes, some of which are commonly used to normalize RT-PCR data. As special conditions, modeling of rat liver fibrosis with thioacetamide was used.In our experiment, when considering the process of fibrogenesis as a whole, the optimal reference genes were found to be hes1 and sdha. However, when focusing on specific stages of fibrosis, a pair of genes should be selected depending on the stability indicators. At the initial fibrogenesis stages, sdha and hprt can be used. The hes1 gene is suitable as a reference gene, when the average Cq value of the target genes is approximately 29 cycles (as in hes1). Hes1 should be used with care when working in the Cq ranges of target genes of 26–29 and above 30, since the error is likely to increase. Following the same principle, the optimum Cq value for the sdha gene was observed to be 27, although the Cq range of 24–27 is also acceptable. At the same time, when working in the Cq range of above 28, the use of sdha may be associated with an increase in calculation errors.

Publisher

Scientific Center for Biomedical Technologies of the Federal Medical-Biological Agency

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3