High-speed video analysis of wing-snapping in two manakin clades(Pipridae: Aves)

Author:

Bostwick Kimberly S.1,Prum Richard O.2

Affiliation:

1. Museum of Vertebrates, Department of Ecology and Evolutionary Biology,Cornell University, Ithaca, NY 14853, USA

2. Natural History Museum and Biodiversity Research Center, and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045,USA

Abstract

SUMMARYBasic kinematic and detailed physical mechanisms of avian, non-vocal sound production are both unknown. Here, for the first time, field-generated high-speed video recordings and acoustic analyses are used to test numerous competing hypotheses of the kinematics underlying sonations, or non-vocal communicative sounds, produced by two genera of Pipridae, Manacus and Pipra (Aves). Eleven behaviorally and acoustically distinct sonations are characterized, five of which fall into a specific acoustic class of relatively loud, brief, broad-frequency sound pulses, or snaps. The hypothesis that one kinematic mechanism of snap production is used within and between birds in general, and manakins specifically, is rejected. Instead, it is verified that three of four competing hypotheses of the kinematic mechanisms used for producing snaps, namely: (1) above-the-back wing-against-wing claps, (2)wing-against-body claps and (3) wing-into-air flicks, are employed between these two clades, and a fourth mechanism, (4) wing-against-tail feather interactions, is discovered. The kinematic mechanisms used to produce snaps are invariable within each identified sonation, despite the fact that a diversity of kinematic mechanisms are used among sonations. The other six sonations described are produced by kinematic mechanisms distinct from those used to create snaps, but are difficult to distinguish from each other and from the kinematics of flight. These results provide the first detailed kinematic information on mechanisms of sonation in birds in general, and the Pipridae specifically. Further, these results provide the first evidence that acoustically similar avian sonations, such as brief, broad frequency snaps, can be produced by diverse kinematic means, both among and within species. The use of high-speed video recordings in the field in a comparative manner documents the diversity of kinematic mechanisms used to sonate, and uncovers a hidden, sexually selected radiation of behavioral and communicative diversity in the Pipridae.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference54 articles.

1. Aubin, A. E. (1972). Aural communication in ruffed grouse. Can. J. Zool.50,1225-1229.

2. Bennet-Clark, H. C. (1975). Sound production in insects. Sci. Prog.62,263-283.

3. Bennet-Clark, H. C. and Young, D. (1992). A model of the mechanism of sound production in cicadas. J. Exp. Biol.173,123-153.

4. Bertram, B. C. (1977). Variation in the wing-song of the Flappet Lark. Anim. Behav.25,165-170.

5. Bomford, M. (1986). Breeding displays and calls of the Banded Dotterel (Charadrius bicinctus). Notornis33,219-232.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3