Schwann cells are axo-protective after injury irrespective of myelination status in mouse Schwann cell–neuron cocultures

Author:

Mutschler Clara12ORCID,Fazal Shaline V.123,Schumacher Nathalie4,Loreto Andrea12,Coleman Michael P.12,Arthur-Farraj Peter12ORCID

Affiliation:

1. John Van Geest Centre for Brain Repair 1 , Department of Clinical Neurosciences , , Cambridge CB2 0PY , UK

2. University of Cambridge 1 , Department of Clinical Neurosciences , , Cambridge CB2 0PY , UK

3. Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge 2 , Cambridge CB2 0AW , UK

4. Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège 3 , 4000 Liège , Belgium

Abstract

ABSTRACT Myelinating Schwann cell (SC)–dorsal root ganglion (DRG) neuron cocultures are an important technique for understanding cell–cell signalling and interactions during peripheral nervous system (PNS) myelination, injury, and regeneration. Although methods using rat SCs and neurons or mouse DRG explants are commonplace, there are no established protocols for compartmentalised myelinating cocultures with dissociated mouse cells. There consequently is a need for a coculture protocol that allows separate genetic manipulation of mouse SCs or neurons, or use of cells from different transgenic animals to complement in vivo mouse experiments. However, inducing myelination of dissociated mouse SCs in culture is challenging. Here, we describe a new method to coculture dissociated mouse SCs and DRG neurons in microfluidic chambers and induce robust myelination. Cocultures can be axotomised to study injury and used for drug treatments, and cells can be lentivirally transduced for live imaging. We used this model to investigate axon degeneration after traumatic axotomy and find that SCs, irrespective of myelination status, are axo-protective. At later timepoints after injury, live imaging of cocultures shows that SCs break up, ingest and clear axonal debris.

Funder

Medical Research Council

Belgian National Fund for Scientific Research F.R.S. - FNRS

Wellcome Trust

University of Cambridge

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. First person – Clara Mutschler;Journal of Cell Science;2023-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3