Model organisms lead the way to protein palmitoyltransferases

Author:

Linder Maurine E.1,Deschenes Robert J.2

Affiliation:

1. Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA

2. Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA

Abstract

The acylation of proteins with palmitate and related fatty acids has been known for over 30 years, but the molecular machinery that carries out palmitoylation has only recently emerged from studies in the model organisms Saccharomyces cerevisiae and Drosophila. Two classes of protein acyltransferases (PATs) have been proposed. In yeast, members of a family of integral membrane proteins harboring a cysteine-rich domain (CRD) containing a conserved DHHC (Asp-His-His-Cys) motif are PATs for cytoplasmic signaling molecules. The DHHC-CRD protein Erf2p, together with an associated subunit Erf4p, palmitoylates yeast Ras proteins, and Akr1p catalyzes the palmitoylation of the yeast casein kinase Yck2p. The existence of a second class of PATs that modify secreted signaling proteins has been suggested from work in Drosophila. Rasp is required in vivo for the production of functional Hedgehog and shares sequence identity with membrane-bound O-acyltransferases, which suggests that it catalyzes the palmitoylation of Hedgehog. With the identification of PATs in model genetic organisms, the field is now poised to uncover their mammalian counterparts and to understand the enzymology of protein palmitoylation.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3