Cadherin-2 participates in the morphogenesis of the zebrafish inner ear

Author:

Babb-Clendenon Sherry1,Shen Yu-chi2,Liu Qin3,Turner Katharyn E.1,Mills M. Susan1,Cook Greg W.1,Miller Caroline A.4,Gattone Vincent H.4,Barald Kate F.2,Marrs James A.1

Affiliation:

1. Department of Medicine, Indiana University Medical Center, 950 West Walnut Street, Indianapolis, IN 46202, USA

2. Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-0616, USA

3. Department of Biology, University of Akron, Akron, OH 44325

4. Department of Anatomy, Indiana University Medical Center, Indianapolis, IN 46202

Abstract

Molecular mechanisms that control inner ear morphogenesis from the placode to the three-dimensional functional organ are not well understood. We hypothesize that cell-cell adhesion, mediated by cadherin molecules, contributes significantly to various stages of inner ear formation. Cadherin-2 (Cdh2) function during otic vesicle morphogenesis was investigated by examining morpholino antisense oligonucleotide knockdown and glass onion (glo) (Cdh2 mutant) zebrafish embryos. Placode formation, vesicle cavitation and specification occurred normally, but morphogenesis of the otic vesicle was affected by Cdh2 deficiency: semicircular canals were reduced or absent. Phalloidin staining of the hair cell stereocillia demonstrated that cadherin-2 (cdh2) loss-of-function did not affect hair cell number, but acetylated tubulin labeling showed that hair cell kinocilia were shorter and irregularly shaped. Statoacoustic ganglion size was significantly reduced, which suggested that neuron differentiation or maturation was affected. Furthermore, cdh2 loss-of-function did not cause a general developmental delay, since differentiation of other tissues, including eye, proceeded normally. These findings demonstrate that Cdh2 selectively affects epithelial morphogenetic cell movements, particularly semicircular canal formation, during normal ear mophogenesis.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3