Carboxyamidotriazole-induced inhibition of mitochondrial calcium import blocks capacitative calcium entry and cell proliferation in HEK-293 cells

Author:

Mignen Olivier1,Brink Christine2,Enfissi Antoine34,Nadkarni Aditi2,Shuttleworth Trevor J.1,Giovannucci David R.2,Capiod Thierry34

Affiliation:

1. Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA

2. Department of Neuroscience, Medical College of Ohio, 3036 Arlington Avenue, Toledo, OH 43614, USA

3. INSERM, EMI 0228, IFR118, Université des Sciences et Technologies de Lille 1, Bât. SN3, 59655 Villeneuve d'Ascq CEDEX, France

4. INSERM, U442, IFR46, Université Paris-Sud, Bât.443, 91405 Orsay CEDEX, France

Abstract

Blocking calcium entry may prevent normal and pathological cell proliferation. There is evidence suggesting that molecules such as carboxyamidotriazole, widely used in anti-cancer therapy based on its ability to block calcium entry in nonexcitable cells, also have antiproliferative properties. We found that carboxyamidotriazole and the capacitative calcium entry blocker 2-aminoethoxydiphenyl borate inhibited proliferation in HEK-293 cells with IC50 values of 1.6 and 50 μM, respectively. Capacitative calcium entry is activated as a result of intracellular calcium store depletion. However, non-capacitative calcium entry pathways exist that are independent of store depletion and are activated by arachidonic acid and diacylglycerol, generated subsequent to G protein coupled receptor stimulation. We found that carboxyamidotriazole completely inhibited the capacitative calcium entry and had no effect on the amplitude of arachidonic-acid-activated non-capacitative calcium entry. However, investigation of the effects of carboxyamidotriazole on mitochondrial calcium dynamics induced by carbachol, capacitative calcium entry and exogenously set calcium loads in intact and digitonin-permeabilized cells revealed that carboxyamidotriazole inhibited both calcium entry and mitochondrial calcium uptake in a time-dependent manner. Mitochondrial inner-membrane potential was altered by carboxyamidotriazole treatment, suggesting that carboxyamidotriazole antagonizes mitochondrial calcium import and thus local calcium clearance, which is crucial for the maintenance of capacitative calcium entry.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3