Hydrogen sulfide (H2S) and hypoxia inhibit salmonid gastrointestinal motility: evidence for H2S as an oxygen sensor

Author:

Dombkowski Ryan A.1,Naylor Marie G.1,Shoemaker Emma1,Smith Michelle1,DeLeon Eric R.23,Stoy Gilbrian F.43,Gao Yan3,Olson Kenneth R.3

Affiliation:

1. Department of Biology, Saint Mary's College, Notre Dame, IN 46556, USA

2. Department of Chemistry, University of Notre Dame, Notre Dame, IN 46556, USA

3. Indiana University School of Medicine – South Bend, South Bend, IN 46617, USA

4. Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA

Abstract

SUMMARY Hydrogen sulfide (H2S) has been shown to affect gastrointestinal (GI) motility and signaling in mammals and O2-dependent H2S metabolism has been proposed to serve as an O2 ‘sensor’ that couples hypoxic stimuli to effector responses in a variety of other O2-sensing tissues. The low PO2 values and high H2S concentrations routinely encountered in the GI tract suggest that H2S might also be involved in hypoxic responses in these tissues. In the present study we examined the effect of H2S on stomach, esophagus, gallbladder and intestinal motility in the rainbow trout (Oncorhynchus mykiss) and coho salmon (Oncorhynchus kisutch) and we evaluated the potential for H2S in oxygen sensing by examining GI responses to hypoxia in the presence of known inhibitors of H2S biosynthesis and by adding the sulfide donor cysteine (Cys). We also measured H2S production by intestinal tissue in real time and in the presence and absence of oxygen. In tissues exhibiting spontaneous contractions, H2S inhibited contraction magnitude (area under the curve and amplitude) and frequency, and in all tissues it reduced baseline tension in a concentration-dependent relationship. Longitudinal intestinal smooth muscle was significantly more sensitive to H2S than other tissues, exhibiting significant inhibitory responses at 1–10 μmol l–1 H2S. The effects of hypoxia were essentially identical to those of H2S in longitudinal and circular intestinal smooth muscle; of special note was a unique transient stimulatory effect upon application of both hypoxia and H2S. Inhibitors of enzymes implicated in H2S biosynthesis (cystathionine β-synthase and cystathionine γ-lyase) partially inhibited the effects of hypoxia whereas the hypoxic effects were augmented by the sulfide donor Cys. Furthermore, tissue production of H2S was inversely related to O2; addition of Cys to intestinal tissue homogenate stimulated H2S production when the tissue was gassed with 100% nitrogen (∼0% O2), whereas addition of oxygen (∼10% O2) reversed this to net H2S consumption. This study shows that the inhibitory effects of H2S on the GI tract of a non-mammalian vertebrate are identical to those reported in mammals and they provide further evidence that H2S is a key mediator of the hypoxic response in a variety of O2-sensitive tissues.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference43 articles.

1. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells;Attene-Ramos;Environ. Mol. Mutagen.,2010

2. Hypoxia in the renal medulla: implications for hydrogen sulfide signaling;Beltowski;J. Pharmacol. Exp. Ther.,2010

3. Luminal sulfide and large intestine mucosa: friend or foe?;Blachier;Amino Acids,2010

4. Mitochondria and sulfide: a very old story of poisoning, feeding and signaling?;Bouillaud;Antioxid. Redox. Signal.,2011

5. Passive loss of hydrogen sulfide in biological experiments;DeLeon;Anal. Biochem.,2011

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3