Ca2+ versus Zn2+ transport in the gills of freshwater rainbow trout and the cost of adaptation to waterborne Zn2+

Author:

Hogstrand C,Reid S,Wood C

Abstract

Previous work suggested that Ca2+ and Zn2+ share a common uptake pathway in rainbow trout gills. We here report on relationships between the kinetic variables for unidirectional Ca2+ influx and unidirectional Zn2+ influx during a 1 month exposure of freshwater rainbow trout to Zn2+ (150 µg l-1=2.3 µmol l-1 as total zinc, Zn). Initial exposure to Zn2+ caused a large competitive inhibition of Ca2+ influx, as indicated by a threefold increase in apparent Km for Ca2+ (measured in the presence of Zn2+). There was also a smaller non-competitive inhibition (50 % decrease in Jmax) of the Ca2+ transport system, which was abolished after 1­2 weeks of exposure. The Km, measured in the absence of Zn2+, decreased dramatically (i.e. elevated affinity) on days 1­4 but increased thereafter; both true and apparent Km finally stabilized significantly above control levels. However, the Km values for Ca2+ (<200 µmol l-1) were low relative to the Ca2+ level in the water (1000 µmol l-1), and therefore the changes did not influence the actual Ca2+ influx of the fish, which tracked Jmax. In contrast, water [Zn2+] (2.3 µmol l-1 as total Zn) was close to the reported apparent Km (3.7 µmol l-1) for Zn2+ influx in the presence of 1000 µmol l-1 Ca2+. Unidirectional Zn2+ influx increased during the first week of exposure to waterborne Zn2+, followed by a persistent reduction to about 50 % of control levels, effects that may be largely explained by the observed changes in true Km for Ca2+. We speculate that the initial response of the fish to elevated [Zn2+] is to compensate for a reduced availability of Ca2+ by markedly increasing the affinity of a dual Ca2+/Zn2+ transporter. Once the Ca2+ influx is 'corrected' by restoration of functional transport sites (Jmax), the system is tuned to limit the influx of Zn2+ by a persistent reduction in the affinities for both ions. The changes in influx characteristics for Ca2+ and Zn2+ were correlated with internal physiological alterations indicative of adaptation to Zn2+ and increased metabolic cost. Depressed plasma [Ca] was corrected within 1 week, and there were no effects on whole-body [Ca] or [Zn]. A slight accumulation of Zn in the gills was associated with increased branchial metallothionein levels. Rates of protein synthesis and degradation in the gills were initially increased and whole-body growth was transiently impaired, effects which were reversed after 18 days of exposure. Sublethal challenge with Zn2+ (at 450 µg l-1=6.9 µmol l-1 as total Zn) always depressed plasma [Ca] in control fish, but by 1 month of exposure to Zn2+ at 150 µg l-1 (as total Zn), experimental fish were resistant to challenge. However, the fish did not acquire increased survival tolerance (LT50) to a lethal concentration of Zn2+ (4 mg l-1=61 µmol l-1 as total Zn).

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3