Carbon Dioxide-induced Bioluminescence Increase in Arachnocampa Larvae

Author:

Charlton Hamish Richard1,Merritt David John1ORCID

Affiliation:

1. School of Biological Sciences, The University of Queensland, Brisbane, Qld 4072 Australia

Abstract

Arachnocampa larvae utilise bioluminescence to lure small arthropod prey into their web-like silk snares. The luciferin-luciferase light-producing reaction occurs in a specialised light organ composed of Malpighian tubule cells in association with a tracheal mass. The accepted model for bioluminescence regulation is that light is actively repressed during the non-glowing period and released when glowing through the night. The model is based upon foregoing observations that carbon dioxide (CO2) – a commonly-used insect anaesthetic – produces elevated light output in whole, live larvae as well as isolated light organs. Alternative anaesthetics were reported to have a similar light-releasing effect. We set out to test this model in Arachnocampa flava larvae by exposing them to a range of anaesthetics and gas mixtures. The anaesthetics isoflurane, ethyl acetate, and diethyl ether did not produce high bioluminescence responses in the same way as CO2. Ligation and dissection experiments localised the CO2 response to the light organ rather than it being a response to general anaesthesia. Exposure to hypoxia through the introduction of nitrogen gas combined with CO2 exposures highlighted that continuity between the longitudinal tracheal trunks and the light organ tracheal mass is necessary for recovery of the CO2-induced light response. The physiological basis of the CO2-induced bioluminescence increase remains unresolved but is most likely related to access of oxygen to the photocytes. The results suggest that the repression model for bioluminescence control can be rejected. An alternative is proposed based on neural upregulation modulating bioluminescence intensity.

Funder

University of Queensland

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference50 articles.

1. Transcriptomes from the photogenic and non-photogenetic tissues and life stages of the Aspisoma lineatum firefly (Coleoptera: Lampyridae): implications for the evolutionary origins of bioluminescence and its associated light organs;Amaral;Gene Rep.,2017

2. The physiological and behavioral effects of carbon dioxide on Drosophila melanogaster larvae;Badre;Comp. Biochem. Physiol. A,2005

3. A new subgenus and five new species of Australian glow-worms (Diptera: Keroplatidae: Arachnocampa);Baker;Mem. Queensl. Mus.,2010

4. Life cycle of an Australian glow-worm Arachnocampa flava Harrison (Diptera: Keroplatidae: Arachnocampinae);Baker;Aust. Entomol.,2003

5. Distribution and phylogenetic relationships of Australian glow-worms Arachnocampa (Diptera, Keroplatidae);Baker;Mol. Phylogenet. Evol.,2008

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3