Flexible locomotion in complex environments: the influence of species, speed and sensory feedback on panarthropod inter-leg coordination

Author:

Nirody Jasmine A.1ORCID

Affiliation:

1. University of Chicago Department of Organismal Biology and Anatomy , , Chicago, IL 60637 , USA

Abstract

ABSTRACT Panarthropods (a clade containing arthropods, tardigrades and onychophorans) can adeptly move across a wide range of challenging terrains and their ability to do so given their relatively simple nervous systems makes them compelling study organisms. Studies of forward walking on flat terrain excitingly point to key features in inter-leg coordination patterns that seem to be ‘universally’ shared across panarthropods. However, when movement through more complex, naturalistic terrain is considered, variability in coordination patterns – from the intra-individual to inter-species level – becomes more apparent. This variability is likely to be due to the interplay between sensory feedback and local pattern-generating activity, and depends crucially on species, walking speed and behavioral goal. Here, I gather data from the literature of panarthropod walking coordination on both flat ground and across more complex terrain. This Review aims to emphasize the value of: (1) designing experiments with an eye towards studying organisms in natural environments; (2) thoughtfully integrating results from various experimental techniques, such as neurophysiological and biomechanical studies; and (3) ensuring that data is collected and made available from a wider range of species for future comparative analyses.

Funder

University of Oxford

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference121 articles.

1. Optimization and gaits in the locomotion of vertebrates;Alexander;Physiol. Rev.,1989

2. A dynamic similarity hypothesis for the gaits of quadrupedal mammals;Alexander;J. Zool.,1983

3. The comparative investigation of the stick insect and cockroach models in the study of insect locomotion;Ayali;Curr. Opin. Insect Sci.,2015

4. Sensory control of locomotor mode in semi-aquatic spiders;Barnes,1991

5. A spider in motion: facets of sensory guidance;Barth;J. Comp. Physiol. A,2021

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3