Embryonic requirements for ErbB signaling in neural crest development and adult pigment pattern formation

Author:

Budi Erine H.1,Patterson Larissa B.1,Parichy David M.1

Affiliation:

1. Department of Biology, Institute for Stem Cell and Regenerative Medicine,University of Washington, Box 351800, Seattle, WA 98195-1800, USA.

Abstract

Vertebrate pigment cells are derived from neural crest cells and are a useful system for studying neural crest-derived traits during post-embryonic development. In zebrafish, neural crest-derived melanophores differentiate during embryogenesis to produce stripes in the early larva. Dramatic changes to the pigment pattern occur subsequently during the larva-to-adult transformation, or metamorphosis. At this time, embryonic melanophores are replaced by newly differentiating metamorphic melanophores that form the adult stripes. Mutants with normal embryonic/early larval pigment patterns but defective adult patterns identify factors required uniquely to establish,maintain or recruit the latent precursors to metamorphic melanophores. We show that one such mutant, picasso, lacks most metamorphic melanophores and results from mutations in the ErbB gene erbb3b, which encodes an EGFR-like receptor tyrosine kinase. To identify critical periods for ErbB activities, we treated fish with pharmacological ErbB inhibitors and also knocked down erbb3b by morpholino injection. These analyses reveal an embryonic critical period for ErbB signaling in promoting later pigment pattern metamorphosis, despite the normal patterning of embryonic/early larval melanophores. We further demonstrate a peak requirement during neural crest migration that correlates with early defects in neural crest pathfinding and peripheral ganglion formation. Finally, we show that erbb3bactivities are both autonomous and non-autonomous to the metamorphic melanophore lineage. These data identify a very early, embryonic, requirement for erbb3b in the development of much later metamorphic melanophores,and suggest complex modes by which ErbB signals promote adult pigment pattern development.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3