Cartilage to bone transformation during fracture healing is coordinated by the invading vasculature and induction of the core pluripotency genes

Author:

Hu Diane P.1,Ferro Federico1,Yang Frank1,Taylor Aaron J.1,Chang Wenhan2,Miclau Theodore1,Marcucio Ralph S.1,Bahney Chelsea S.1ORCID

Affiliation:

1. University of California, San Francisco (UCSF) & San Francisco General Hospital (SFGH), Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, 2550 23rd Street, Building 9, 3rd Floor, San Francisco, CA 94110, USA

2. University of California, San Francisco (UCSF) & San Francisco Veterans Affairs Medical Center (VAMC), Department of Medicine, 1700 Owens Street, 4th Floor, San Francisco, CA 94158, USA

Abstract

ABSTRACT Fractures heal predominantly through the process of endochondral ossification. The classic model of endochondral ossification holds that chondrocytes mature to hypertrophy, undergo apoptosis and new bone forms by invading osteoprogenitors. However, recent data demonstrate that chondrocytes transdifferentiate to osteoblasts in the growth plate and during regeneration, yet the mechanism(s) regulating this process remain unknown. Here, we show a spatially-dependent phenotypic overlap between hypertrophic chondrocytes and osteoblasts at the chondro-osseous border in the fracture callus, in a region we define as the transition zone (TZ). Hypertrophic chondrocytes in the TZ activate expression of the pluripotency factors [Sox2, Oct4 (Pou5f1), Nanog], and conditional knock-out of Sox2 during fracture healing results in reduction of the fracture callus and a delay in conversion of cartilage to bone. The signal(s) triggering expression of the pluripotency genes are unknown, but we demonstrate that endothelial cell conditioned medium upregulates these genes in ex vivo fracture cultures, supporting histological evidence that transdifferentiation occurs adjacent to the vasculature. Elucidating the cellular and molecular mechanisms underlying fracture repair is important for understanding why some fractures fail to heal and for developing novel therapeutic interventions.

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Musculoskeletal Transplant Foundation

AO Foundation

UCSF Clinical and Translational Science Institute

UCSF Core Center for Musculoskeletal Biology and Medicine

US Bone and Joint Initiative

Department of Veterans Affairs

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3