Changing the demand on specific muscle groups affects the walk–run transition speed

Author:

Bartlett Jamie L.1,Kram Rodger1

Affiliation:

1. Locomotion Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA

Abstract

SUMMARY It has been proposed that muscle-specific factors trigger the human walk–run transition. We investigated if changing the demand on trigger muscles alters the preferred walk–run transition speed. We hypothesized that (1) reducing the demand on trigger muscles would increase the transition speed and (2) increasing the demand on trigger muscles would decrease the transition speed. We first determined the normal preferred walk–run transition speed (PTS) using a step-wise protocol with a randomized speed order. We then determined PTS while subjects walked with external devices that decreased or increased the demand on specific muscle groups. We concurrently measured the electromyographic activity of five leg muscles (tibialis anterior, soleus, rectus femoris, medial and lateral gastrocnemius) at each speed and condition. For this study, we developed a dorsiflexor assist device that aids the dorsiflexor muscles. A leg swing assist device applied forward pulling forces at the feet thus aiding the hip flexors during swing. A third device applied a horizontal force near the center of mass, which impedes or aids forward progression thus overloading or unloading the plantarflexor muscles. We found that when demand was decreased in the muscles measured, the PTS significantly increased. Conversely, when muscle demand was increased in the plantar flexors, the PTS decreased. However, combining assistive devices did not produce an even faster PTS. We conclude that altering the demand on specific muscles can change the preferred walk–run transition speed. However, the lack of a summation effect with multiple external devices,suggests that another underlying factor ultimately determines the preferred walk–run transition speed.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3