Structural determinants of the cellular localization and shuttling of TDP-43

Author:

Ayala Youhna M.1,Zago Paola1,D'Ambrogio Andrea1,Xu Ya-Fei2,Petrucelli Leonard2,Buratti Emanuele1,Baralle Francisco E.1

Affiliation:

1. International Centre for Genetic Engineering and Biotechnology (ICGEB), 34012 Trieste, Italy

2. Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA

Abstract

TDP-43 (also known as TARDBP) regulates different processes of gene expression, including transcription and splicing, through RNA and DNA binding. Moreover, recent reports have shown that the protein interacts with the 3′UTRs of specific mRNAs. The aberrant cellular distribution and aggregation of TDP-43 were recently reported in neurodegenerative diseases, namely frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). A detailed description of the determinants for cellular localization has yet to emerge, including information on how the known functions of TDP-43 and cellular targeting affect each other. We provide the first experimental evidence that TDP-43 continuously shuttles between nucleus and cytoplasm in a transcription-dependent manner. Furthermore, we investigate the role of the functional TDP-43 domains in determining cellular targeting through a combination of immunofluorescence and biochemical fractionation methods. Our analyses indicate that the C-terminus is essential for solubility and cellular localization, because its deletion results in the formation of large nuclear and cytoplasmic aggregates. Disruption of the RNA-recognition domain required for RNA and DNA binding, however, alters nuclear distribution by decreasing TDP-43 presence in the nucleoplasm. Our findings suggest that TDP-43 solubility and localization are particularly sensitive to disruptions that extend beyond the newly found nuclear localization signal and depend on a combination of factors that are closely connected to the functional properties of this protein.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3