Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies

Author:

Sandri Marco1234,Coletto Luisa2,Grumati Paolo5,Bonaldo Paolo5

Affiliation:

1. Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy

2. Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padova, Italy

3. Institute of Neuroscience, Consiglio Nazionale delle Ricerche, 35121 Padova, Italy

4. Department of Medicine, McGill University, Montreal, QC H3G 1Y6, Canada

5. Department of Molecular Medicine, University of Padova, 35131 Padova, Italy

Abstract

Summary A number of recent studies have highlighted the importance of autophagy and the ubiquitin-proteasome in the pathogenesis of muscle wasting in different types of inherited muscle disorders. Autophagy is crucial for the removal of dysfunctional organelles and protein aggregates, whereas the ubiquitin-proteasome is important for the quality control of proteins. Post-mitotic tissues, such as skeletal muscle, are particularly susceptible to aged or dysfunctional organelles and aggregation-prone proteins. Therefore, these degradation systems need to be carefully regulated in muscles. Indeed, excessive or defective activity of the autophagy lysosome or ubiquitin-proteasome leads to detrimental effects on muscle homeostasis. A growing number of studies link abnormalities in the regulation of these two pathways to myofiber degeneration and muscle weakness. Understanding the pathogenic role of these degradative systems in each inherited muscle disorder might provide novel therapeutic targets to counteract muscle wasting. In this Commentary, we will discuss the current view on the role of autophagy lysosome and ubiquitin-proteasome in the pathogenesis of myopathies and muscular dystrophies, and how alteration of these degradative systems contribute to muscle wasting in inherited muscle disorders. We will also discuss how modulating autophagy and proteasome might represent a promising strategy for counteracting muscle loss in different diseases.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 149 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3