Will jumping snails prevail? Influence of near-future CO2, temperature and hypoxia on respiratory performance in the tropical conch Gibberulus gibberulus gibbosus

Author:

Lefevre Sjannie1,Watson Sue-Ann2,Munday Philip L.23,Nilsson Göran E.1

Affiliation:

1. Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo NO-0316, Norway

2. ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia

3. College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia

Abstract

ABSTRACT Tropical coral reef organisms are predicted to be especially sensitive to ocean warming because many already live close to their upper thermal limit, and the expected rise in ocean CO2 is proposed to further reduce thermal tolerance. Little, however, is known about the thermal sensitivity of a diverse and abundant group of reef animals, the gastropods. The humpbacked conch (Gibberulus gibberulus gibbosus), inhabiting subtidal zones of the Great Barrier Reef, was chosen as a model because vigorous jumping, causing increased oxygen uptake (ṀO2), can be induced by exposure to odour from a predatory cone snail (Conus marmoreus). We investigated the effect of present-day ambient (417–454 µatm) and projected-future (955–987 µatm) PCO2 on resting (ṀO2,rest) and maximum (ṀO2,max) ṀO2, as well as ṀO2 during hypoxia and critical oxygen tension (PO2,crit), in snails kept at present-day ambient (28°C) or projected-future temperature (33°C). ṀO2,rest and ṀO2,max were measured both at the acclimation temperature and during an acute 5°C increase. Jumping caused a 4- to 6-fold increase in ṀO2, and ṀO2,max increased with temperature so that absolute aerobic scope was maintained even at 38°C, although factorial scope was reduced. The humpbacked conch has a high hypoxia tolerance with a PO2,crit of 2.5 kPa at 28°C and 3.5 kPa at 33°C. There was no effect of elevated CO2 on respiratory performance at any temperature. Long-term temperature records and our field measurements suggest that habitat temperature rarely exceeds 32.6°C during the summer, indicating that these snails have aerobic capacity in excess of current and future needs.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference123 articles.

1. Respiratory response to temperature and hypoxia in the zebra mussel Dreissena polymorpha;Alexander;Comp. Biochem. Physiol. A Mol. Integr. Physiol.,2004

2. The properties and functions of alanopine dehydogenase and octopine dehydrogenase from the pedal retractor muscle of Strombidae (Class Gastropoda);Baldwin;Pac. Sci.,1982

3. Contributions of aerobic and anaerobic energy production during swimming in the bivalve mollusc Limaria fragilis (family Limidae);Baldwin;J. Comp. Physiol. B,1979

4. On the role of octopine dehydrogenase in the adductor muscles of bivalve molluscs;Baldwin;Comp. Biochem. Physiol. B Comp. Biochem.,1978

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3