The molecular machinery of autophagy: unanswered questions

Author:

Klionsky Daniel J.1

Affiliation:

1. Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

Autophagy is a process in which cytosol and organelles are sequestered within double-membrane vesicles that deliver the contents to the lysosome/vacuole for degradation and recycling of the resulting macromolecules. It plays an important role in the cellular response to stress, is involved in various developmental pathways and functions in tumor suppression, resistance to pathogens and extension of lifespan. Conversely, autophagy may be associated with certain myopathies and neurodegenerative conditions. Substantial progress has been made in identifying the proteins required for autophagy and in understanding its molecular basis; however, many questions remain. For example, Tor is one of the key regulatory proteins at the induction step that controls the function of a complex including Atg1 kinase, but the target of Atg1 is not known. Although autophagy is generally considered to be nonspecific, there are specific types of autophagy that utilize receptor and adaptor proteins such as Atg11; however, the means by which Atg11 connects the cargo with the sequestering vesicle, the autophagosome, is not understood. Formation of the autophagosome is a complex process and neither the mechanism of vesicle formation nor the donor membrane origin is known. The final breakdown of the sequestered cargo relies on well-characterized lysosomal/vacuolar proteases; the roles of lipases, by contrast, have not been elucidated, and we do not know how the integrity of the lysosome/vacuole membrane is maintained during degradation.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3