The Importance of Torsion in the Design of Insect Wings

Author:

ENNOS A. ROLAND1

Affiliation:

1. Department of Biological Sciences, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter EX4 4PS; Department of Biological Science, University of York, Heslington, YorkYO1 5DD

Abstract

A model insect wing is described in which spars of corrugated membrane which incorporate stiffening veins branch serially from a V-section leading edge spar. The mechanical behaviour of this model is analysed. The open, corrugated spars possess great resistance to bending, but are compliant in torsion. Torsion of the leading edge spar will result in torsion and relative movement of the rear spars. As a result camber will automatically be set up in the wing as it twists. Aerodynamic forces produced during the wing strokes will result in torsion and camber of the wing which should improve its aerodynamic efficiency. The effects of varying parameters of the wing model are examined. For given wing torsion, higher camber is given by spars branching from the leading edge at a lower angle, by spars which curve posteriorly, and by spars which diverge from each other. Wings of three species of flies were each subjected to two series of mechanical tests. Application of a force behind the torsional axis caused the wings to twist and to develop camber. Immobilizing basal regions of the leading edge greatly reduced compliance to torsion and camber, as predicted by the theoretical model. Aerodynamic forces produced during a half-stroke are sufficient to produce observed values of torsion and camber, and to maintain changes in pitch caused by inertial effects at stroke reversal.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3