Maturation of neural stem cells and integration into hippocampal circuits: functional study in post-ischemia in situ

Author:

Kopach Olga12ORCID,Rybachuk Oksana13,Krotov Volodymyr1,Kyryk Vitalii3ORCID,Voitenko Nana14ORCID,Pivneva Tatyana134

Affiliation:

1. Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine

2. Institute of Neurology, University College London, London, UK

3. State Institute of Genetic and Regenerative Medicine, Kyiv, Ukraine

4. Kyiv Academic University, Kyiv, Ukraine

Abstract

The hippocampus is the most susceptible region of the brain to ischemic lesion, with highly vulnerable pyramidal interneurons to ischemic cell death. A restricted brain neurogenesis limits a withdrawal of massive cell death after stroke that endorses cell-based therapies for neuronal replacement strategies following cerebral ischemia. Neurons differentiated from neural stem/progenitor cells (NSPCs) matured and integrated into host circuitry, improving recovery after stroke. However, how host environment regulates the NSPC behaviour in post-ischemic tissue remains unknown. Here we studied functional maturation of NSPCs in control and post-ischemic hippocampal tissue after modelling cerebral ischemia in situ. We traced maturation of electrophysiological properties and integration of the NSPC-derived neurons into the host circuits, developing appropriate activity that takes 3 weeks or less after engraftment. In the ischemic-injured tissue, the NSPC-derived neurons exhibited functional deficits and differentiation of embryonic NSPCs was boosted to glial type – oligodendrocytes and astrocytes. Our findings of the delayed neuronal maturation whilst the promoted NSPC differentiation towards glial cell type in post-ischemic conditions provide new insights into stem-cell-therapy for replacement strategies in cerebral ischemia.

Funder

The State Fund for Fundamental Research in Ukraine

National Academy of Sciences of Ukraine

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3