Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport

Author:

Theurkauf W.E.1,Smiley S.1,Wong M.L.1,Alberts B.M.1

Affiliation:

1. Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.

Abstract

Inhibitor studies have implicated microtubules in at least three important developmental processes during Drosophila oogenesis: oocyte determination and growth during stages 1 through 6, positioning of the anterior determinant bicoid mRNA during stages 9 through 12, and ooplasmic streaming during stages 10b through 12. We have used fluorescence cytochemistry together with laser scanning confocal microscopy to identify distinct microtubule structures at each of the above three periods that are likely to be involved in these processes. During stages 1 through 7, maternal components synthesized in nurse cells are transported through cytoplasmic bridges to the oocyte. At this time, microtubules that appear to originate in the oocyte pass through these cytoplasmic bridges into the adjacent nurse cells; these microtubules are likely to serve as a polarized scaffold on which maternal RNAs and proteins are transported. During stages 7 and 8, microtubules in the oocyte cortex reorganize to form an anterior-to-posterior gradient, suggesting a role for microtubules in the localization of morphogenetic determinants. Finally, when ooplasmic streaming begins during stage 10 b, it is accompanied by the assembly of subsurface microtubule arrays that spiral around the oocyte; these arrays disassemble as the oocyte matures and streaming stops. During ooplasmic streaming, many vesicles are closely associated with the subsurface microtubules, suggesting that streaming is driven by vesicle translocation along microtubules. We believe that actin plays a secondary role in each of these morphogenetic events, based on our parallel studies of actin organization during each of the above stages of oogenesis.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 253 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3