Sox7 and Sox17 are strain-specific modifiers of the lymphangiogenic defects caused by Sox18 dysfunction in mice

Author:

Hosking Brett1,François Mathias1,Wilhelm Dagmar1,Orsenigo Fabrizio23,Caprini Andrea23,Svingen Terje1,Tutt Desmond1,Davidson Tara1,Browne Catherine1,Dejana Elisabetta23,Koopman Peter1

Affiliation:

1. Institute for Molecular Bioscience, The University of Queensland, Brisbane,Qld 4072, Australia.

2. IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan,Italy.

3. Department of Biomolecular Sciences and Biotechnologies, School of Sciences,University of Milan, 20129 Milan, Italy.

Abstract

Developmental defects caused by targeted gene inactivation in mice are commonly subject to strain-specific modifiers that modulate the severity of the phenotype. Although several genetic modifier loci have been mapped in mice, the gene(s) residing at these loci are mostly unidentified, and the molecular mechanisms of modifier action remain poorly understood. Mutations in Sox18 cause a variable phenotype in the human congenital syndrome hypotrichosis-lymphedema-telangiectasia, and the phenotype of Sox18-null mice varies from essentially normal to completely devoid of lymphatic vasculature and lethal, depending on the strain of the mice,suggesting a crucial role for strain-specific modifiers in this system. Here we show that two closely related Group F Sox factors, SOX7 and SOX17, are able to functionally substitute for SOX18 in vitro and in vivo. SOX7 and SOX17 are not normally expressed during lymphatic development, excluding a conventional redundancy mechanism. Instead, these genes are activated specifically in the absence of SOX18 function, and only in certain strains. Our studies identify Sox7 and Sox17 as modifiers of the Sox18 mutant phenotype, and reveal their mechanism of action as a novel mode of strain-specific compensatory upregulation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3