Evidence for multi-scale power amplification in skeletal muscle

Author:

Petersen Jarrod C.1ORCID,Roberts Thomas J.1ORCID

Affiliation:

1. Brown University Department of Ecology, Evolution, and Organismal Biology , , Providence, RI 02912, USA

Abstract

ABSTRACT Many animals use a combination of skeletal muscle and elastic structures to amplify power output for fast motions. Among vertebrates, tendons in series with skeletal muscle are often implicated as the primary power-amplifying spring, but muscles contain elastic structures at all levels of organization, from the muscle tendon to the extracellular matrix to elastic proteins within sarcomeres. The present study used ex vivo muscle preparations in combination with high-speed video to quantify power output, as the product of force and velocity, at several levels of muscle organization to determine where power amplification occurs. Dynamic ramp-shortening contractions in isolated frog flexor digitorum superficialis brevis were compared with isotonic power output to identify power amplification within muscle fibers, the muscle belly, free tendon and elements external to the muscle tendon. Energy accounting revealed that artifacts from compliant structures outside of the muscle–tendon unit contributed significant peak instantaneous power. This compliance included deflection of clamped bone that stored and released energy contributing 195.22±33.19 W kg−1 (mean±s.e.m.) to the peak power output. In addition, we found that power detected from within the muscle fascicles for dynamic shortening ramps was 338.78±16.03 W kg−1, or approximately 1.75 times the maximum isotonic power output of 195.23±8.82 W kg−1. Measurements of muscle belly and muscle–tendon unit also demonstrated significant power amplification. These data suggest that intramuscular tissues, as well as bone, have the capacity to store and release energy to amplify whole-muscle power output.

Funder

National Science Foundation

National Institutes of Health

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3