Fibronectin mediates mesendodermal cell fate decisions

Author:

Cheng Paul12,Andersen Peter13,Hassel David456,Kaynak Bogac L.1,Limphong Pattraranee3,Juergensen Lonny6,Kwon Chulan13,Srivastava Deepak1475

Affiliation:

1. Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA

2. Bioengineering, University of California San Francisco, San Francisco, CA 94158, USA

3. Division of Cardiology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA

4. Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA

5. Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA

6. Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg 400 69120, Germany

7. Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA

Abstract

Non-cell-autonomous signals often play crucial roles in cell fate decisions during animal development. Reciprocal signaling between endoderm and mesoderm is vital for embryonic development, yet the key signals and mechanisms remain unclear. Here, we show that endodermal cells efficiently promote the emergence of mesodermal cells in the neighboring population through signals containing an essential short-range component. The endoderm-mesoderm interaction promoted precardiac mesoderm formation in mouse embryonic stem cells and involved endodermal production of fibronectin. In vivo, fibronectin deficiency resulted in a dramatic reduction of mesoderm accompanied by endodermal expansion in zebrafish embryos. This event was mediated by regulation of Wnt signaling in mesodermal cells through activation of integrin-β1. Our findings highlight the importance of the extracellular matrix in mediating short-range signals and reveal a novel function of endoderm, involving fibronectin and its downstream signaling cascades, in promoting the emergence of mesoderm.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3