Cardiovascular and haematological responses of Atlantic cod (Gadus morhua) to acute temperature increase

Author:

Gollock M. J.1,Currie S.2,Petersen L. H.1,Gamperl A. K.1

Affiliation:

1. Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL,A1C 5S7, Canada

2. Biology Department, Mount Allison University, 63B York Street, Sackville,New Brunswick, E4L 1G, Canada

Abstract

SUMMARYFor fish to survive large acute temperature increases (i.e. >10.0°C)that may bring them close to their critical thermal maximum (CTM), oxygen uptake at the gills and distribution by the cardiovascular system must increase to match tissue oxygen demand. To examine the effects of an acute temperature increase (∼1.7°C h-1 to CTM) on the cardiorespiratory physiology of Atlantic cod, we (1) carried out respirometry on 10.0°C acclimated fish, while simultaneously measuring in vivocardiac parameters using Transonic® probes, and (2) constructed in vitro oxygen binding curves on whole blood from 7.0°C acclimated cod at a range of temperatures. Both cardiac output(Q̇) and heart rate(fh) increased until near the fish's CTM(22.2±0.2°C), and then declined rapidly. Q10 values for Q̇ and fh were 2.48 and 2.12, respectively, and increases in both parameters were tightly correlated with O2 consumption. The haemoglobin (Hb)-oxygen binding curve at 24.0°C showed pronounced downward and rightward shifts compared to 20.0°C and 7.0°C, indicating that both binding capacity and affinity decreased. Further, Hb levels were lower at 24.0°C than at 20.0°C and 7.0°C. This was likely to be due to cell swelling, as electrophoresis of Hb samples did not suggest protein denaturation, and at 24.0°C Hb samples showed peak absorbance at the expected wavelength (540 nm). Our results show that cardiac function is unlikely to limit metabolic rate in Atlantic cod from Newfoundland until close to their CTM, and we suggest that decreased blood oxygen binding capacity may contribute to the plateau in oxygen consumption.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3