Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

Author:

Ludovic Arandel1,Micaela Polay-Espinosa1,Magdalena Matloka1,Audrey Bazinet1,Damily De Dea Diniz1,Naïra Naouar1,Frédérique Rau1,Arnaud Jollet1,Frédérique Edom-Vovard1,Kamel Mamchaoui1,Mark Tarnopolsky2,Jack Puymirat3,Christophe Battail4,Anne Boland4,Jean-Francois Deleuze4,Vincent Mouly1,Arnaud Klein F.1,Denis Furling1ORCID

Affiliation:

1. Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, 75013 Paris, France

2. McMaster University Medical Center, 1200 Main St. W., Hamilton, Ontario, Canada

3. CHU de Quebec, site Enfant-Jésus, Université Laval, G1J 1Z4, Québec, Canada

4. Centre National de Génotypage, Institut de Génomique, CEA, Evry, France

Abstract

Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA-aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared to control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 but not in DM2 muscle cell lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which the myogenic differentiation has been forced by MyoD overexpression. As a proof-of-concept, we showed that antisense approaches alleviate disease-associated defects and a RNA-seq analysis confirmed that the vast majority of misspliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. In summary, immortalized DM1 muscle cell lines display characteristic disease-associated molecular features such as nuclear RNA-aggregates and splicing defects that can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiologic mechanisms and evaluate in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations.

Funder

Association Francaise contre les Myopathies

Université Pierre et Marie Curie

Institut National de la Santé et de la Recherche Médicale

Centre National de la Recherche Scientifique

Agence Nationale de la Recherche

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3