Competition, collaboration and coordination – determining how cells bypass DNA damage

Author:

Sale Julian E.

Abstract

Cells must overcome replication blocks that might otherwise lead to genomic instability or cell death. Classical genetic experiments have identified a series of mechanisms that cells use to replicate damaged DNA: translesion synthesis, template switching and homologous recombination. In translesion synthesis, DNA lesions are replicated directly by specialised DNA polymerases, a potentially error-prone approach. Template switching and homologous recombination use an alternative undamaged template to allow the replicative polymerases to bypass DNA lesions and, hence, are generally error free. Classically, these pathways have been viewed as alternatives, competing to ensure replication of damaged DNA templates is completed. However, this view of a series of static pathways has been blurred by recent work using a combination of genetic approaches and methodology for examining the physical intermediates of bypass reactions. These studies have revealed a much more dynamic interaction between the pathways than was initially appreciated. In this Commentary, I argue that it might be more helpful to start thinking of lesion-bypass mechanisms in terms of a series of dynamically assembled ‘modules’, often comprising factors from different classical pathways, whose deployment is crucially dependent on the context in which the bypass event takes place.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3