Selective localization of the polytopic membrane protein prominin in microvilli of epithelial cells - a combination of apical sorting and retention in plasma membrane protrusions

Author:

Corbeil D.1,Roper K.1,Hannah M.J.1,Hellwig A.1,Huttner W.B.1

Affiliation:

1. Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, and Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany.

Abstract

Prominin is a recently identified polytopic membrane protein expressed in various epithelial cells, where it is selectively associated with microvilli. When expressed in non-epithelial cells, prominin is enriched in plasma membrane protrusions. This raises the question of whether the selective association of prominin with microvilli in epithelial cells is solely due to its preference for, and stabilization in, plasma membrane protrusions, or is due to both sorting to the apical plasma membrane domain and subsequent enrichment in plasma membrane protrusions. To investigate this question, we have generated stably transfected MDCK cells expressing either full-length or C-terminally truncated forms of mouse prominin. Confocal immunofluorescence and domain-selective cell surface biotinylation experiments on transfected MDCK cells grown on permeable supports demonstrated the virtually exclusive apical localization of prominin at steady state. Pulse-chase experiments in combination with domain-selective cell surface biotinylation showed that newly synthesized prominin was directly targeted to the apical plasma membrane domain. Immunoelectron microscopy revealed that prominin was confined to microvilli rather than the planar region of the apical plasma membrane. Truncation of the cytoplasmic C-terminal tail of prominin impaired neither its apical cell surface expression nor its selective retention in microvilli. Both the apical-specific localization of prominin and its selective retention in microvilli were maintained when MDCK cells were cultured in low-calcium medium, i.e. in the absence of tight junctions. Taken together, our results show that: (i) prominin contains dual targeting information, for direct delivery to the apical plasma membrane domain and for the enrichment in the microvillar subdomain; and (ii) this dual targeting does not require the cytoplasmic C-terminal tail of prominin and still occurs in the absence of tight junctions. The latter observation suggests that entry into, and retention in, plasma membrane protrusions may play an important role in the establishment and maintenance of the apical-basal polarity of epithelial cells.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3