Phosphatidylinositol 3-kinase translocation to the nucleus is induced by interleukin 1 and prevented by mutation of interleukin 1 receptor in human osteosarcoma Saos-2 cells

Author:

Bavelloni A.1,Santi S.1,Sirri A.1,Riccio M.1,Faenza I.1,Zini N.1,Cecchi S.1,Ferri A.1,Auron P.1,Maraldi N.M.1,Marmiroli S.1

Affiliation:

1. Laboratory of Cell Biology and Electron Microscopy, IOR, and Institute of Normal and Pathological Cytomorphology, CNR c/o IOR, Bologna 40136, Italy.

Abstract

Although interleukin 1 (IL-1) functions have been extensively characterized, the mechanisms by which IL-1 signals are transduced from the plasma membrane to the nucleus are less known. Recent evidence indicates that phosphatidylinositol 3-kinase (PI3-kinase) could be activated by a direct association with the activated IL-1 receptor. In this study we analyzed the effects of IL-1 on the intracellular distribution of PI3-kinase in wild-type Saos-2 human osteosarcoma cells, and in cell clones overexpressing type I IL-1 receptor (IL-1RI). PI3-kinase intracellular distribution displays two distinct patterns. In quiescent cells, PI3-kinase is distributed through the cytoplasm, although a portion is present in the nucleus; following stimulation with IL-1, PI3-kinase is redistributed, increasing in the nuclear compartment. Both immunoblotting and immunofluorescence data indicate that IL-1 causes a rapid and transient translocation of PI3-kinase from the cytoplasm to the nucleus. This phenomenon is prevented by PI3-kinase inhibitors, suggesting that the maintenance of PI3-kinase activity is essential for IL-1-induced translocation. Indeed, in cell clones stably transfected with Y479F receptor mutant, in which the binding of the enzyme to the activated receptor is blocked, IL-1-induced PI3-kinase translocation to the nucleus is completely prevented. These data suggest that PI3-kinase translocation to the nucleus upon IL-1R activation is an early event in IL-1 signaling mechanism, and may be involved in transcriptional activation.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3