Migration increases mitochondrial oxidative capacity without increasing reactive oxygen species emission in a songbird

Author:

Coulson Soren Z.12ORCID,Guglielmo Christopher G.12,Staples James F.1

Affiliation:

1. Western University 1 Department of Biology , , London, ON , Canada , N6A 5B7

2. Centre for Animals on the Move, Western University 2 , London, ON , Canada , N6A 3K7

Abstract

ABSTRACT Birds remodel their flight muscle metabolism prior to migration to meet the physiological demands of migratory flight, including increases in both oxidative capacity and defence against reactive oxygen species. The degree of plasticity mediated by changes in these mitochondrial properties is poorly understood but may be explained by two non-mutually exclusive hypotheses: variation in mitochondrial quantity or in individual mitochondrial function. We tested these hypotheses using yellow-rumped warblers (Setophaga coronata), a Nearctic songbird which biannually migrates 2000–5000 km. We predicted higher flight muscle mitochondrial abundance and substrate oxidative capacity, and decreased reactive oxygen species emission in migratory warblers captured during autumn migration compared with a short-day photoperiod-induced non-migratory phenotype. We assessed mitochondrial abundance via citrate synthase activity and assessed isolated mitochondrial function using high-resolution fluororespirometry. We found 60% higher tissue citrate synthase activity in the migratory phenotype, indicating higher mitochondrial abundance. We also found 70% higher State 3 respiration (expressed per unit citrate synthase) in mitochondria from migratory warblers when oxidizing palmitoylcarnitine, but similar H2O2 emission rates between phenotypes. By contrast, non-phosphorylating respiration was higher and H2O2 emission rates were lower in the migratory phenotype. However, flux through electron transport system complexes I–IV, II–IV and IV was similar between phenotypes. In support of our hypotheses, these data suggest that flight muscle mitochondrial abundance and function are seasonally remodelled in migratory songbirds to increase tissue oxidative capacity without increasing reactive oxygen species formation.

Funder

Natural Sciences and Engineering Research Council of Canada

Queen Elizabeth II Graduate Scholarship in Science and Technology

Western University

Publisher

The Company of Biologists

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3