Sheet migration by wounded monolayers as an emergent property of single-cell dynamics

Author:

Bindschadler Michael1,McGrath James L.1

Affiliation:

1. Department of Biomedical Engineering, University of Rochester, Rochester, NY 14450, USA

Abstract

Multi-cell migration is important for tissue development and repair. An experimentally accessible example of multi-cell migration is provided by the classic scratch-wound assay. In this assay, a confluent monolayer is `injured' by forcibly removing a strip of cells, and the remaining monolayer `heals' through some combination of cell migration, spreading and proliferation. The scratch wound has been used for decades as a model of wound healing and an assay of cell migration, however the mechanisms that underlie the coherent expansion of cells in the surviving monolayer are still debated. Here we develop an agent-based computational model that predicts the most robust characteristics of healing in scratch wounds. The cells in our model are simple mechanical agents that respond to cell contact by redirecting migration and slowing division. We imbued model cells with crawling and growth dynamics and measured for individual L1 fibroblasts and found that simulated recovery occurs in a steady, sheet-like and division-independent fashion to mimic healing by L1s. The lack of cohesion and biochemical cell-cell communication in the model suggests that these factors are not strictly necessary for cells to migrate as a group. Instead, our analysis suggests that steady sheet migration can be explained by cell spreading in the monolayer.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3