MaternalXenopus Zic2negatively regulatesNodal-relatedgene expression during anteroposterior patterning

Author:

Houston Douglas W.1,Wylie Christopher2

Affiliation:

1. The University of Iowa, Department of Biological Sciences, 257 BB, Iowa City,IA 52246-1324, USA

2. Cincinnati Children's Hospital Medical Center, Division of Developmental Biology MLC 7007, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA

Abstract

During the development of Xenopus laevis, maternal mRNAs and proteins stored in the egg direct early patterning events such as the specification of the dorsoventral axis and primary germ layers. In an expression screen to identify maternal factors important for early development, we isolated a truncated cDNA for maternal Zic2(tZic2), encoding a zinc-finger transcription factor. The predicted tZic2 protein lacked the N-terminal region, but retained the zinc-finger domain. When expressed in embryos, tZic2 inhibited head and axial development,and blocked the ability of full-length Zic2 to induce neural crest genes. Depletion of maternal Zic2 from oocytes, using antisense oligonucleotides, caused exogastrulation, anterior truncations and axial defects. We show that loss of maternal Zic2 results in persistent and increased expression of Xenopus nodal-related (Xnr) genes, except for Xnr4, and overall increased Nodal signaling. Injection of a Nodal antagonist, Cerberus-short, reduced the severity of head and axial defects in Zic2-depleted embryos. Depletion of Zic2 could not restore Xnr expression to embryos additionally depleted of VegT, a T-domain transcription factor and an activator of Xnr gene transcription. Taken together, our results suggest a role for maternal Zic2 in the suppression of Xnr genes in early development. ZIC2 is mutated in human holoprosencephaly (HPE), a severe defect in brain hemisphere separation,and these results strengthen the suggestion that increased Nodal-related activity is a cause of HPE.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference58 articles.

1. Agius, E., Oelgeschlager, M., Wessely, O., Kemp, C. and De Robertis, E. M. (2000). Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development127,1173-1183.

2. Aruga, J., Nagai, T., Tokuyama, T., Hayashizaki, Y., Okazaki,Y., Chapman, V. M. and Mikoshiba, K. (1996). The mouse zic gene family. Homologues of the Drosophila pair-rule gene odd-paired. J. Biol. Chem.271,1043-1047.

3. Branford, W. W. and Yost, H. J. (2002). Lefty-dependent inhibition of Nodal- and Wnt-responsive organizer gene expression is essential for normal gastrulation. Curr. Biol.12,2136-2141.

4. Brewster, R., Lee, J. and Ruiz i Altaba, A.(1998). Gli/Zic factors pattern the neural plate by defining domains of cell differentiation. Nature393,579-583.

5. Brown, L., Paraso, M., Arkell, R. and Brown, S.(2005). In vitro analysis of partial loss-of-function ZIC2 mutations in holoprosencephaly: alanine tract expansion modulates DNA binding and transactivation. Hum. Mol. Genet.14,411-420.

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3