Lack of plakophilin 1 increases keratinocyte migration and reduces desmosome stability

Author:

South Andrew P.1,Wan Hong1,Stone Michael G.2,Dopping-Hepenstal Patricia J. C.1,Purkis Patricia E.3,Marshall John F.2,Leigh Irene M.3,Eady Robin A. J.1,Hart Ian R.2,McGrath John A.1

Affiliation:

1. Department of Cell and Molecular Pathology, St John's Institute of Dermatology, Guy's, King's and St Thomas' School of Medicine, London, UK

2. Richard Dimbleby/Cancer Research UK Department of Cancer Research, Guy's,King's and St Thomas' School of Medicine, London, UK

3. Centre for Cutaneous Research, St Bartholomew's and the Royal London School of Medicine and Dentistry, London, UK

Abstract

Ablation of the desmosomal plaque component plakophilin 1 underlies the autosomal recessive genodermatosis, skin fragility-ectodermal dysplasia syndrome (OMIM 604536). Skin from affected patients is thickened with increased scale, and there is loss of adhesion between adjacent keratinocytes,which exhibit few small, poorly formed desmosomes. To investigate further the influence of plakophilin 1 on keratinocyte adhesion and desmosome morphology,we compared plakophilin 1-deficient keratinocytes (vector controls) with those expressing recombinant plakophilin 1 introduced by retroviral transduction. We found that plakophilin 1 increases desmosomal protein content within the cell rather than enhancing transcriptional levels of desmosomal genes. Re-expression of plakophilin 1 in null cells retards cell migration but does not alter keratinocyte cell growth. Confluent sheets of plakophilin 1-deficient keratinocytes display fewer calcium-independent desmosomes than do plakophilin 1-deficient keratinocytes expressing recombinant plakophilin 1 or keratinocytes expressing endogenous plakophilin 1. In addition electron microscopy studies show that re-expression of plakophilin 1 affects desmosome size and number. Collectively, these results demonstrate that restoration of plakophilin 1 function in our culture system influences the transition of desmosomes from a calcium-dependent to a calcium-independent state and this correlates with altered keratinocyte migration in response to wounding. Thus,plakophilin 1 has a key role in increasing desmosomal protein content, in desmosome assembly, and in regulating cell migration.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3