Ataxin-2 binding protein 1 is a context-specific positive regulator of Notch signaling during neurogenesis in Drosophila melanogaster

Author:

Shukla Jay Prakash1,Deshpande Girish12ORCID,Shashidhara L. S.1ORCID

Affiliation:

1. Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune, 411008, Maharashtra, India

2. Department of Molecular biology, Princeton University, Princeton NJ 08540, USA

Abstract

The role of Notch pathway during lateral inhibition underlying binary cell fate choice is extensively studied, although context-specificity that generates diverse outcomes is relatively less well understood. In the peripheral nervous system of Drosophila melanogaster, differential Notch signaling between cells of proneural cluster orchestrates sensory organ specification. Here we report functional analysis of Drosophila Ataxin2 binding protein1 (dA2BP1) during this process. It’s human orthologue A2BP1 is linked to type 2 Spinocerebellar ataxia and other complex neuronal disorders. Downregulation of dA2BP1 in the proneural cluster increases adult sensory bristle number whereas it’s over-expression results in loss of bristles. We show that dA2BP1 regulates sensory organ specification by potentiating Notch signaling. Supporting its direct involvement, the biochemical analysis shows that dA2BP1 is part of the Suppressor of Hairless (Su(H)) complex both in the presence and absence of Notch. However, in the absence of Notch signaling, the dA2BP1 interacting fraction of Su(H) does not associate with the repressor proteins, Groucho and CtBP. Based on these data we propose a model explaining requirement of dA2BP1 as a positive regulator of Notch, whose activity is context-specific.

Funder

Department of Science and Technology, Ministry of Science and Technology

Department of Biotechnology , Ministry of Science and Technology

NIH

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3