Ammonia excretion in the freshwater planarianSchmidtea mediterranea

Author:

Weihrauch Dirk1,Chan Ainsley C1,Meyer Heiko2,Döring Carmen2,Sourial Mary M1,O'Donnell Michael J3

Affiliation:

1. University of Manitoba;

2. University of Osnabrück;

3. McMaster University

Abstract

SummaryIn aquatic invertebrates metabolic nitrogenous waste is excreted predominately as ammonia. Very little is known, however, of the underlying mechanisms of ammonia excretion, particularly in freshwater species. Our results indicate that in the non-parasitic freshwater planarian Schmidtea mediterranea ammonia excretion depends on an acidification of the apical unstirred layer of the body surface and consequent ammonia trapping. Buffering of the environment to a pH of 7 or higher decreased excretion rate. Inhibitor experiments suggested further that the excretion mechanism involves the participation of the V-type H+-ATPase and carbonic anhydrase and possibly also the Na+/K+-ATPase and Na+/H+ exchangers (NHEs). Alkalinization (pH 8.5, 2 days) of the environment led to a 1.9-fold increase in body ammonia levels and to a down-regulation of V-ATPase (subunit A) and Rh-protein mRNA. Further, a two day exposure to non-lethal ammonia concentrations (1 mmol L-1) caused a doubling of body ammonia levels and led to an increase in Rh-protein and Na+/K+-ATPase (α-subunit) mRNA expression levels. In-situ hybridization studies indicated a strong mRNA expression of the Rh-protein in the epidermal epithelium. The ammonia excretion mechanism proposed for S. mediterranea reveals striking similarities to the current model suggested to function in gills of freshwater fish.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference76 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3