Cell guidance by ultrafine topography in vitro

Author:

Clark P.1,Connolly P.1,Curtis A.S.1,Dow J.A.1,Wilkinson C.D.1

Affiliation:

1. Department of Cell Biology, University of Glasgow, Scotland, UK.

Abstract

Laser holography and microelectronic fabrication techniques have been employed to make grating surfaces in fused quartz with ultrafine period (260 nm) in an attempt to mimic the topography of aligned fibrillar extracellular matrix (ECM), which, in the past, has been shown to affect the behaviour of cells in vitro and in vivo. The alignment of BHK cells, MDCK cells and chick embryo cerebral neurones on 260 nm period grating surfaces (130 nm grooves separated by 130 nm) of various depths (100, 210 and 400 nm) was examined. While all gratings aligned BHK cell populations, the degree of alignment was dependent on depth. The response of single MDCK cells to the grating patterns was both to align precisely to the direction of the gratings, and to elongate; only their elongation was depth-dependent. MDCK cells that were part of epithelial cell islands, and the outgrowth of neurites from chick embryo neurones, were mainly unaffected by the grating surfaces. It is clear that topography on this scale can control cell behaviour, but guidance of this type is strongly dependent on cell type and cell-cell interactions.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3