Embryonic vascular establishment requires protein C receptor-expressing endothelial progenitors

Author:

Cissy Yu Qing1ORCID,Bai Lanyue1,Chen Yingying1ORCID,Chen Yujie2,Peng Guangdun3,Wang Daisong1,Yang Guowei4,Cui Guizhong3,Jing Naihe135ORCID,Arial Zeng Yi14ORCID

Affiliation:

1. State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences 1 , Shanghai 200031 , China

2. CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS 3 Key Laboratory of Computational Biology , , Shanghai 200031 , China

3. CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Institutes of Biomedicine and Health, Chinese Academy of Sciences 4 , Guangzhou 510530 , China

4. School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences 2 , 310024 Hangzhou , China

5. Institute for Stem Cell and Regeneration, Chinese Academy of Sciences 5 , Beijing 100101 , China

Abstract

ABSTRACT Vascular establishment is one of the early events in embryogenesis. It is believed that vessel-initiating endothelial progenitors cluster to form the first primitive vessel. Understanding the molecular identity of these progenitors is crucial in order to elucidate lineage hierarchy. In this study, we identify protein C receptor (Procr) as an endothelial progenitor marker and investigate the role of Procr+ progenitors during embryonic vascular development. Using a ProcrmGFP-2A-lacZ reporter, we reveal a much earlier Procr expression (embryonic day 7.5) than previously acknowledged (embryonic day 13.5). Genetic fate-mapping experiments using ProcrCre and ProcrCreER demonstrate that Procr+ cells give rise to blood vessels throughout the entire embryo proper. Single-cell RNA-sequencing analyses place Procr+ cells at the start of endothelial commitment and maturation. Furthermore, targeted ablation of Procr+ cells results in failure of vessel formation and early embryonic lethality. Notably, genetic fate mapping and scRNA-seq pseudotime analysis support the view that Procr+ progenitors can give rise to hemogenic endothelium. In this study, we establish a Procr expression timeline and identify Procr+ vessel-initiating progenitors, and demonstrate their indispensable role in establishment of the vasculature during embryo development.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

National Key Research and Development Program of China

Youth Innovation Promotion Association

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3