The design of mineralised hard tissues for their mechanical functions

Author:

Currey J.D.1

Affiliation:

1. Department of Biology, University of York, PO Box 373, York YO10 5YW, UK. jdc1@york.ac.uk

Abstract

Most hard tissues have as their primary purpose to be stiff. Outside the arthropods, mineralisation of a soft organic matrix is the almost universal method of producing high stiffness. However, stiffening brings with it the undesirable mechanical result of brittleness (lack of toughness). The mineralisation of some tissues, such as bone and dentine, can be modified rather easily, in evolutionary terms, to produce the optimum mix of stiffness with bending strength (which, except at the highest mineralisations, go together) on one hand and toughness on the other hand. However, in most other tissues, such as mollusc shell, echinoderm skeleton, brachiopod shell, barnacle shell and enamel, mineralisation is almost all-or-none, and no subtle gradations seem possible. In such cases, other features, such as architecture, must be modified to produce a useful skeleton. Not only the mechanical properties of the skeletal tissue, but its cost, mass and time taken for production will, biologists tend to assume, be balanced by natural selection to produce a satisfactory result. However, such complexity makes it difficult to be sure that we understand the extent to which mineralised skeletal materials are the best possible solution to the problems facing the animals and that we are not just telling ‘Just-So’ stories. Furthermore, there are some skeletal materials that do not seem to make much sense at the moment, although no doubt all will become clear eventually.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 209 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3