Immune-mediated alterations in nociceptive sensory function in Aplysia californica

Author:

Clatworthy A.L.1,Grose E.1

Affiliation:

1. University of North Carolina at Charlotte, Department of Biology, Charlotte, NC 28223, USA. aclatwor@email.uncc.edu

Abstract

Nerve injury in Aplysia californica is accompanied by a profound long-lasting enhancement of the excitability of nociceptive sensory neurons that have axons in injured nerves. It is likely that a variety of signals are involved in triggering this injury-induced sensory plasticity. The objective of the present study was to determine whether cells of the cellular defense system (hemocytes) play a role in the modulation of sensory excitability following injury. In support of such an idea, we have shown previously that the induction of a cellular defense reaction close to sensory axons is accompanied by an increase in the excitability of sensory neurons with axons close to responding hemocytes. Furthermore, in the present study, we verified that, following axonal crush, numerous hemocytes accumulate at the injured site on the nerve. Using a hemocyte/nervous system co-culture preparation, we found that there were no significant differences in the expression of injury-induced sensory plasticity between sensory neurons incubated in the presence or absence of hemocytes. To overcome some potential limitations of our co-culture preparation, we used the endotoxin lipopolysaccharide (LPS) as a tool to activate the hemocytes. Sensory cells incubated in the presence of LPS and hemocytes were significantly more excitable than sensory cells incubated in the presence of LPS alone. We speculate that the addition of LPS to the incubation medium containing hemocytes enhanced the release of hemocyte-derived cytokine-like factors such as interleukin-1 and tumor necrosis factor. These cytokine-like factors may act as signals to modulate the expression of injury-induced sensory hyperexcitability.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3