Time course of salinity adaptation in a strongly euryhaline estuarine teleost, Fundulus heteroclitus: a multivariable approach

Author:

Marshall W. S.1,Emberley T. R.1,Singer T. D.2,Bryson S. E.1,McCormick S. D.3

Affiliation:

1. St Francis Xavier University 1 Department of Biology , , Antigonish, Nova Scotia, Canada B2G 2W5

2. Vanderbilt University, Department of Anaesthesiology 2 , Laboratory of Cellular and Molecular Physiology, 504 Oxford House 1313 21st Avenue South, Nashville, TN 37232-2125, USA

3. Biological Resources Division, USGS,Turner’s Falls, MA 01376, USA 3 Conte Anadromous Fish Research Laboratory ,

Abstract

ABSTRACT Freshwater-adapted killifish (Fundulus heteroclitus) were transferred directly from soft fresh water to full-strength sea water for periods of 1 h, 3 h, 8 h and 1, 2, 7, 14 and 30 days. Controls were transferred to fresh water for 24 h. Measured variables included: blood [Na+], osmolality, glucose and cortisol levels, basal and stimulated rates of ion transport and permeability of in vitro opercular epithelium, gill Na+/K+-ATPase and citrate synthase activity and chloride cell ultrastructure. These data were compared with previously published killifish cystic fibrosis transmembrane conductance regulator (kfCFTR) expression in the gills measured over a similar time course. Plasma cortisol levels peaked at 1 h, coincident with a rise in plasma [Na+]. At 8 h after transfer to sea water, a time at which previous work has shown kfCFTR expression to be elevated, blood osmolality and [Na+] were high, and cortisol levels and opercular membrane short-circuit current (Isc; a measure of Cl− secretion rate) were low. The 24 h group, which showed the highest level of kfCFTR expression, had the highest plasma [Na+] and osmolality, elevated plasma cortisol levels, significantly lower opercular membrane resistance, an increased opercular membrane ion secretion rate and collapsed tubule inclusions in mitochondria-rich cells, but no change in gill Na+/K+-ATPase and citrate synthase activity or plasma glucose levels. Apparently, killifish have a rapid (<1 h) cortisol response to salinity coupled to subsequent (8–48 h) expression of kfCFTR anion channel proteins in existing mitochondria-rich cells that convert transport from ion uptake to ion secretion.

Publisher

The Company of Biologists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3