Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture

Author:

Buschmann M.D.1,Gluzband Y.A.1,Grodzinsky A.J.1,Hunziker E.B.1

Affiliation:

1. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge 02139, USA.

Abstract

This study focuses on the effect of static and dynamic mechanical compression on the biosynthetic activity of chondrocytes cultured within agarose gel. Chondrocyte/agarose disks (3 mm diameter) were placed between impermeable platens and subjected to uniaxial unconfined compression at various times in culture (2-43 days). [35S]sulfate and [3H]proline radiolabel incorporation were used as measures of proteoglycan and protein synthesis, respectively. Graded levels of static compression (up to 50%) produced little or no change in biosynthesis at very early times, but resulted in significant decreases in synthesis with increasing compression amplitude at later times in culture; the latter observation was qualitatively similar to that seen in intact cartilage explants. Dynamic compression of approximately 3% dynamic strain amplitude (approximately equal to 30 microns displacement amplitude) at 0.01-1.0 Hz, superimposed on a static offset compression, stimulated radiolabel incorporation by an amount that increased with time in culture prior to loading as more matrix was deposited around and near the cells. This stimulation was also similar to that observed in cartilage explants. The presence of greater matrix content at later times in culture also created differences in biosynthetic response at the center versus near the periphery of the 3 mm chondrocyte/agarose disks. The fact that chondrocyte response to static compression was significantly affected by the presence or absence of matrix, as were the physical properties of the disks, suggested that cell-matrix interactions (e.g. mechanical and/or receptor mediated) and extracellular physicochemical effects (increased [Na+], reduced pH) may be more important than matrix-independent cell deformation and transport limitations in determining the biosynthetic response to static compression. For dynamic compression, fluid flow, streaming potentials, and cell-matrix interactions appeared to be more significant as stimuli than the small increase in fluid pressure, altered molecular transport, and matrix-independent cell deformation. The qualitative similarity in the biosynthetic response to mechanical compression of chondrocytes cultured in agarose gel and chondrocytes in intact cartilage further indicates that gel culture preserves certain physiological features of chondrocyte behavior and can be used to investigate chondrocyte response to physical and chemical stimuli in a controlled manner.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3