Mechanics of limb bone loading during terrestrial locomotion in river cooter turtles (Pseudemys concinna)

Author:

Butcher Michael T.1,Blob Richard W.1

Affiliation:

1. Department of Biological Sciences, 132 Long Hall, Clemson University,Clemson, SC 29634, USA

Abstract

SUMMARYStudies of limb bone loading during terrestrial locomotion have focused primarily on birds and mammals. However, data from a broader functional and phylogenetic range of species are critical for understanding the evolution of limb bone function and design. Turtles are an interesting lineage in this context. Although their slow walking speeds and robust limb bones might lead to low locomotor forces and limb bone stresses similar to other non-avian reptiles, their highly sprawled posture could produce high bending loads,leading to high limb bone stresses similar to those of avian and mammalian species, as well as high torsion. To test between these possibilities, we evaluated stresses experienced by the femur of river cooter turtles(Pseudemys concinna) during terrestrial walking by synchronizing measurements of three-dimensional joint kinematics and ground reaction forces(GRFs) during isolated hindlimb footfalls. Further, we evaluated femoral safety factors for this species by comparing our locomotor stress calculations with the results of mechanical property tests. The net GRF magnitude at peak tensile bone stress averaged 0.35 BW (body weight) and was directed nearly vertically for the middle 40–65% of the contact interval, essentially orthogonal to the femur. Peak bending stresses experienced by the femur were low (tensile: 24.9±9.0 MPa; compressive: –31.1±9.1 MPa)and comparable to those in other reptiles, yet peak shear stresses were higher than those in other reptiles, averaging 13.7±4.2 MPa. Such high torsion is present despite cooters lacking a large tail, a feature that has been hypothesized to contribute to torsion in other reptiles in which the tail is dragged along the ground. Comparison of femoral stresses to measurements of limb bone mechanical properties in cooters indicates safety factors to yield of 13.9 in bending and 6.3 in torsion, considerably higher than values typical for birds and mammals, and closer to the elevated values calculated for other reptile species. Thus, not only do turtle limb bones seem considerably`over-designed' for resisting the loads that they encounter, but comparisons of bone loading across tetrapod lineages are consistent with the hypothesis that low limb bone loads, elevated torsion and high safety factors may be primitive features of limb bone design.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference98 articles.

1. Alexander, R. McN. (1974). The mechanics of a dog jumping, Canis familiaris.J. Zool. Lond.173,549-573.

2. Alexander, R. McN. (1981). Factors of safety in the structure of animals. Sci. Prog.67,109-130.

3. Alexander, R. McN. (1997). A theory of mixed chains applied to safety factors in biological systems. J. Theor. Biol.184,247-252.

4. Alexander, R. McN. (1998). Symmorphosis and safety factors. In Principles of Animal Design (ed. D. W. Weibel, C. R. Taylor and L. Bolis), pp. 28-35. Cambridge: Cambridge University Press.

5. Beer, F. P. and Johnston, E. R., Jr (1997).Vector Mechanics for Engineers: Statics and Dynamics (6th edn). Boston, MA: McGraw-Hill.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3