Transgenic expression of late embryogenesis abundant proteins improves tolerance to water stress in Drosophila melanogaster

Author:

Anderson John M.1,Hand Steven C.1ORCID

Affiliation:

1. Division of Cellular Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803,USA

Abstract

ABSTRACT Four lines of Drosophila melanogaster were created that expressed transgenes encoding selected late embryogenesis abundant (LEA) proteins originally identified in embryos of the anhydrobiote Artemia franciscana. The overall aim was to extend our understanding of the protective properties of LEA proteins documented with isolated cells to a desiccation-sensitive organism during exposure to drying and hyperosmotic stress. Embryos of D. melanogaster were dried at 57% relative humidity to promote a loss of 80% tissue water and then rehydrated. Embryos that expressed AfrLEA2 or AfrLEA3m eclosed 2 days earlier than wild-type embryos or embryos expressing green fluorescent protein (Gal4GFP control). For the third instar larval stage, all Afrlea lines and Gal4GFP controls experienced substantial drops in survivorship as desiccation proceeded. When results for all Afrlea lines were combined, Kaplan–Meier survival curves indicated a significant improvement in survivorship in fly lines expressing AfrLEA proteins compared with Gal4GFP controls. The percent water lost at the LT50 (lethal time for 50% mortality) for the AfrLEA lines was 78% versus 52% for Gal4GFP controls. Finally, offspring of fly lines that expressed AfrLEA2, AfrLEA3m or AfrLEA6 exhibited significantly greater success in reaching pupation, compared with wild-type flies, when adults were challenged with hyperosmotic stress (NaCl-fortified medium) and progeny forced to develop under these conditions. In conclusion, the gain of function studies reported here show that LEA proteins can improve tolerance to water stress in a desiccation-sensitive species that normally lacks these proteins, and, simultaneously, underscore the complexity of desiccation tolerance across multiple life stages in multicellular organisms.

Funder

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3