Serotonin mediates stress-like effects on responses to non-nociceptive stimuli in the medicinal leech Hirudo verbana

Author:

Mack Danielle123,Yevugah Andrew4,Renner Kenneth234,Burrell Brian D.123ORCID

Affiliation:

1. University of South Dakota 1 Division of Basic Biomedical Sciences , , Vermillion, SD 57069, USA

2. Center for Brain and Behavior Research 2 , Vermillion, SD 57069, USA

3. University of South Dakota, 2 , Vermillion, SD 57069, USA

4. University of South Dakota 3 Department of Biology , , Vermillion, SD 57069, USA

Abstract

ABSTRACT Noxious stimuli can elicit stress in animals that produce a variety of adaptations including changes in responses to nociceptive and non-nociceptive sensory input. One example is stress-induced analgesia that may be mediated, in part, by the endocannabinoid system. However, endocannabinoids can also have pro-nociceptive effects. In this study, the effects of electroshock, one experimental approach for producing acute stress, were examined on responses to non-nociceptive mechanical stimuli and nociceptive thermal stimuli in the medicinal leech (Hirudo verbana). The electroshock stimuli did not alter the leeches’ responses to nociceptive stimuli, but did cause sensitization to non-nociceptive stimuli, characterized by a reduction in response threshold. These experiments were repeated with drugs that either blocked synthesis of the endocannabinoid transmitter 2-arachidonoylglycerol (2-AG) or transient receptor potential vanilloid (TRPV) channel, which is known to act as an endocannabinoid receptor. Surprisingly, neither treatment had any effect on responses following electroshock. However, the electroshock stimuli reliably increased serotonin (5-hydroxytryptamine or 5HT) levels in the H. verbana CNS. Injection of 5HT mimicked the effects of the electroshocks, sensitizing responses to non-nociceptive stimuli and having no effect on responses to nociceptive stimuli. Injections of the 5HT receptor antagonist methysergide reduced the sensitization effect to non-nociceptive stimuli after electroshock treatment. These results indicate that electroshocks enhance response to non-nociceptive stimuli but do not alter responses to nociceptive stimuli. Furthermore, while 5HT appears to play a critical role in this shock-induced sensitizing effect, the endocannabinoid system seems to have no effect.

Funder

National Institute on Drug Abuse

National Institute of Neurological Disorders and Stroke

University of South Dakota

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3